PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END REGULAR EXAMINATIONS, JAN - 2023 SIGNALS AND SYSTEMS
(ECE BRANCH)
Time: 3 hours
Max. Marks: 70
Answer all the questions from each UNIT (5X14=70M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
1.	a)	With an example explain the following operations on signals: (i) timeshifting and (ii) amplitude-shifting	[7M]	1	
	b)	Determine whether or not each of the following signals is periodic. If a signal is periodic, specify its fundamental period. i. $x(t)=5 \cos (5 t+2)-\sin (2 t-2)$ ii.	[7M]	1	
OR					
2.	a)	Find the signal energy of these signals: $(i)_{X}(t)=u(t)(i i) x(t)=t u(t)$	[7M]	1	
	b)	Test whether the following systems are static, causal, time invariant, linear, stable: $y(t)=x\left(\frac{t}{7}\right)$	[7M]	1	
UNIT-II					
3.	a)	Discuss the analogy between vectors and signals with suitable examples.	[7M]	2	
	b)	Compute the trigonometric Fourier series expansion of the signal shown below:	[7M]	2	
OR					
4.	a)	With necessary examples explain the signal approximation using orthogonal functions.	[7M]	2	
	b)	Discuss the Fourier series representation of continuous time periodic signals.	[7M]	2	
UNIT-III					
5.	a)	Determine the Fourier transform of a two-sided exponential pulse $x(t)=$	[7M]	3	
	b)	Explain the reconstruction of signal from its samples with neat diagrams.	[7M]	3	
OR					
6.	a)	State and prove any two properties of Fourier Transform.	[7M]	3	
	b)	determine the \quad Nyquist rate for the the signal $x(t)=4 \sin 50 \pi t+2 \cos 100 \pi t+5 \cos 150 \pi t$.	[7M]	3	
UNIT-IV					
7.	a)	Find the Convolution of the following signals: $\mathrm{x}_{1}(\mathrm{t})=\mathrm{u}(\mathrm{t}), \mathrm{x}_{2}(\mathrm{t})=\mathrm{e}^{-2 t} u(\mathrm{t})$.	[7M]	4	

