

## PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) II B.TECH I SEMESTER END REGULAR EXAMINATIONS, JAN - 2023 SIGNALS AND SYSTEMS (ECE BRANCH)

Time: 3 hours

Max. Marks: 70

## Answer all the questions from each UNIT (5X14=70M)

| Q.N | No. | Questions                                                                                                                                                        | Marks | CO | KL |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|----|
|     |     | UNIT-I                                                                                                                                                           |       |    |    |
| 1.  | a)  | With an example explain the following operations on signals: (i) time-<br>shifting and (ii) amplitude-shifting                                                   | [7M]  | 1  |    |
|     | b)  | Determine whether or not each of the following signals is periodic. If a signal is periodic, specify its fundamental period.<br>i. $x(t)=5\cos(5t+2)-\sin(2t-2)$ | [7M]  | 1  |    |
|     |     | $ii. \dots (k) = 2 e^{j\left(t+\frac{\pi}{4}\right)} \dots (k)$                                                                                                  |       |    |    |
|     |     | OR                                                                                                                                                               |       |    |    |
| 2.  | a)  | Find the signal energy of these signals: $(i)x(t)=u(t)(ii)x(t)=tu(t)$                                                                                            | [7M]  | 1  |    |
|     | b)  | Test whether the following systems are static, causal, time invariant, linear,<br>stable: $y(t) = x\left(\frac{t}{7}\right)$                                     | [7M]  | 1  |    |
|     |     | UNIT-II                                                                                                                                                          |       |    |    |
| 3.  | a)  | Discuss the analogy between vectors and signals with suitable examples.                                                                                          | [7M]  | 2  |    |
|     | b)  | Compute the trigonometric Fourier series expansion of the signal shown below:                                                                                    | [7M]  | 2  |    |
|     |     | -T -T/2 -T/4 0 T/4 T/2 T t                                                                                                                                       |       |    |    |
|     |     | OR                                                                                                                                                               |       |    |    |
| 4.  | a)  | With necessary examples explain the signal approximation using orthogonal functions.                                                                             | [7M]  | 2  |    |
|     | b)  | Discuss the Fourier series representation of continuous time periodic signals.                                                                                   | [7M]  | 2  |    |
|     | 1   | UNIT-III                                                                                                                                                         |       |    |    |
| 5.  | a)  | Determine the Fourier transform of a two-sided exponential pulse $x(t) = e^{- t }$                                                                               | [7M]  | 3  |    |
|     | b)  | Explain the reconstruction of signal from its samples with neat diagrams.                                                                                        | [7M]  | 3  |    |
|     |     | OR                                                                                                                                                               |       |    |    |
| 6.  | a)  | State and prove any two properties of Fourier Transform.                                                                                                         | [7M]  | 3  |    |
|     | b)  | determine the Nyquist rate for the signal $x(t) = 4 \sin 50 \pi t + 2 \cos 100 \pi t + 5 \cos 150 \pi t$ .                                                       | [7M]  | 3  |    |
|     | I   | UNIT-IV                                                                                                                                                          |       |    | 1  |
| 7.  | a)  | Find the Convolution of the following signals: $x_1(t) = u(t)$ , $x_2(t) = e^{-2t} u(t)$ .                                                                       | [7M]  | 4  |    |

| Code | No: | P21ECT01                                                                                                         |      |   |  |
|------|-----|------------------------------------------------------------------------------------------------------------------|------|---|--|
|      | b)  | With an example explain the relation between convolution and correlation.                                        | [7M] | 4 |  |
|      |     | OR                                                                                                               |      |   |  |
| 8.   | a)  | Find the Convolution of the following signals using graphical convolution method: $x(t)=tu(t) \wedge h(t)=tu(t)$ | [7M] | 4 |  |
|      | b)  | Discuss the cross and auto correlation of functions. Also list the properties of correlation function.           | [7M] | 4 |  |
|      |     | UNIT-V                                                                                                           |      | - |  |
| 9.   | a)  | State and prove the time scaling and linearity properties of Laplace transform.                                  | [7M] | 5 |  |
|      | b)  | Determine the z-transform and the ROC of the signal: $x[n] = i 2(2^n)u[n]$ .                                     | [7M] | 5 |  |
|      |     | OR                                                                                                               |      | 1 |  |
| 10.  | a)  | Find the Laplace transform X(s) and ROC of the following signal:<br>$x(t) = \frac{1}{(s+1)(s+2)}$                | [7M] | 5 |  |
|      | b)  | State and prove any two properties of Z-transforms.                                                              | [7M] | 5 |  |

\*\*\*\*\*